

# STATISTICAL DATA ANALYSIS: IN THE CONTEXT OF PROCESS QUALIFICATION AND CONTROL

Elizabeth J. Kelly
Statistical Sciences Group
Los Alamos National Laboratory
MIS Working Group Meeting, October 23





#### **BACKGROUND**

DOE-STD-3013-2000 (DOE, 2000) Section 6.1.2.2.2

"Once the <u>process</u> has been <u>qualified</u>, material testing, ..., is required ... to the extent necessary to show continued <u>process control</u>."





#### PROCESS QUALIFICATION-Moisture Requirement

- A component of process qualification is the assertion that the calcination process results in items with moisture content less than 0.5wt%.
- This assertion must be made in the face of uncertainty
- Statistical approach assumes that there are moisture measurement data to support this assertion and quantifies the uncertainty based on these data.
- Decision makers decide if uncertainty is acceptable





#### UNCERTAINTY QUANTIFICATION

- Statistical analysis quantifies confidence that the average moisture content of canisters resulting from the calcining process is less than a specified level, (0.5wt%).
  - In a perfect world this uncertainty depends only on between item variability, in reality it also depends on possible biases introduced by sampling and measurements
- Statistical analysis can evaluate more than one confidence limit to support assertion
  - ◆ For example, 95% confidence that the average is < 0.5wt% and 99% confidence that the average is < 0.6wt% (data not too variable) better than 95% confidence that the average is <0.5wt% and 99% confidence that the average is <1.0wt% (larger tails)</p>





#### STATISTICAL ANALYSIS FOR PROCESS CONTROL

- Based on a single confirmatory measurement, does the process remain in control, e.g., is the confirmatory sample within the statistical process control limits?
  - These limits depend on sampling and instrument variability, as well as biases and between item variability.
- How many confirmatory samples are needed to have high confidence that the process remains in control?





## STATISTICAL APPROACH (documented in STATISTICAL ANALYSES OF MOISTURE MEASUREMENT DATA – A WHITE PAPER LA-UR-02-2388)

Based on mathematical model for moisture measurements

$$X_{ijk} = \mu + P_i + S_{ij} + \varepsilon_{ijk}$$

 $X_{iik}$  Moisture measurement

μ Expected moisture after calcining

 $P_i$  Process random variable (rv) with variance  $\sigma_P^2$ 

 $S_{ij}$  Sampling rv with bias,  $eta_S$  and variance  $oldsymbol{\sigma}_S^2$ 

 $\mathcal{E}_{ijk}$  Analytical rv with bias  $\beta_{\varepsilon}$  and variance  $\sigma_{\varepsilon}^2$ 



## PROCESS QUALIFICATION - EXAMPLE CALCULATIONS

 What is the confidence level for the moisture requirement? (solve for Z)

$$\mu + Z(\%)\sigma_P < 0.5wt\%$$

Is the 0.5wt% requirement met at the 99% confidence level?

$$\mu + 2.33\sigma_P < 0.5wt\%$$





## PROCESS CONTROL – SAMPLE CALCULATIONS

 Given a single measurement on an item at what level of confidence does the process remain in control? (solve for Z)

$$X_i < \mu + \beta_S + \beta_\varepsilon + Z(\%) \sqrt{\sigma_P^2 + \sigma_S^2 + \sigma_\varepsilon^2}$$

Given a single measurement on an item does the process remain in control at the 99% level of confidence

$$X_i < \mu + \beta_S + \beta_{\varepsilon} + 2.33\sqrt{\sigma_P^2 + \sigma_S^2 + \sigma_{\varepsilon}^2}$$





## WHAT MAKES THESE CALCULATIONS DIFFICULT?

Do not know expected moisture content, variances and biases. Must estimate from data:

$$\mu \ \sigma_P^2 \ \sigma_S^2 \ \sigma_\varepsilon^2 \ \beta_S \ \beta_\varepsilon$$

- Statistical estimators are complex (especially if unequal sample sizes), but doable (white paper)
- How good are the data for these estimations?





## **EXAMPLES – Estimating** unknowns $\mu$ $\sigma_P^2$ $\sigma_S^2$ $\sigma_{\varepsilon}^2$ $\rho_S$ $\rho_{\varepsilon}$

- Applied successfully to Hanford LOI data for pure materials (one caveat) (white paper)
  - 302 items, 334 measurements
  - Calcining process in control with 99% 99% confidence that average value for all items in this population < 0.23wt.%</li>
  - Upper 99% control limit = 0.24 wt% (process variability dominates). BLO items failed process control check
  - Caveat possible measurement bias (27 GOI items)
- Applied to limited IGA data, illustrative only (white paper)





#### WHAT ARE REMAINING STATISTICAL ANALYSIS ISSUES?

- Representativeness ,e.g.,
   Heterogeneity of material, e.g.,
   Sampling uncertainties
- Measurement Biases? No standards for MIS materials. Differences between methods.





### WHAT ARE WE DOING TO ADDRESS THESE ISSUES?

- Heterogeneity Issue
  - "Representativeness" summit meeting (October 10)
  - Fractionation Study (Bender, Trujillo)
    - Sieving, particle size fractions
    - Moisture measurements and XRF evaluations made on different fractions
  - Large Scale Surrogate Calcination Study (Dworzak, Gillispie)
    - ★ Looking at impact of chunkiness on moisture uptake
- Bias ongoing TGA, SFE, IGA studies

